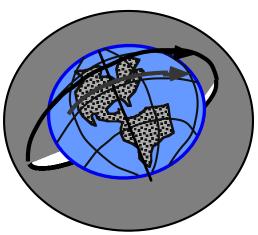
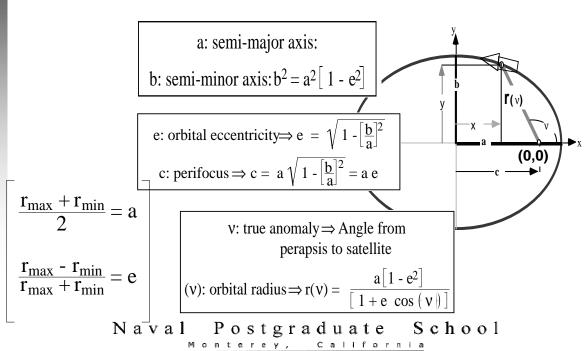
SS3011 Space Technology and Applications

"Orbitology" (cont'd)



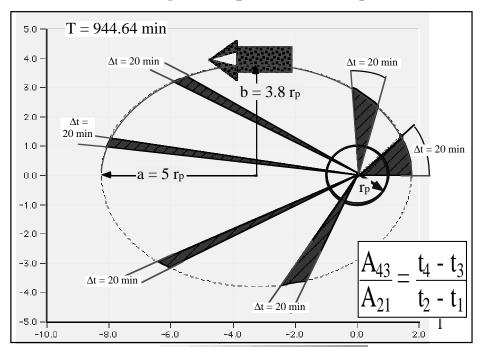
Naval Postgraduate School Monterey, California

Kepler's First Law: In a two body universe, the orbit of a satellite around the Earth is an ellipse with the Earth centered at one of the focii

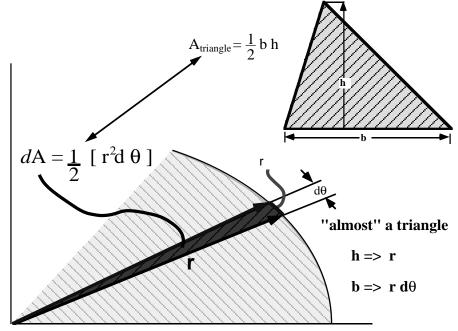


SS3011 Kepler's Second Law

Kepler's Second Law: In a two body universe, radius vector from the sun (Earth) to the planet (satellite) sweeps out equal areas in equal times



SS30Incremental Area Swept Out by Elliptical Arc



Incremental Area Swept and by an arc School

Monterey, California

Area Swept out by an Elliptical Arc (cont'd)

$$A_{\substack{\text{ellip.}\\ \text{arc}}} = \int_{v_0}^{v_1} \left[\frac{1}{2} r (v)^2 d v \right] =$$

$$A_{\text{ellip.}\atop \text{arc}} = \int_{v_0}^{v_1} \left[\frac{1}{2} \left[\frac{a \left[1 - e^2 \right]}{\left[1 + e \cos \left(v \right) \right]} \right]^2 dv \right] =$$

$$\frac{1}{2} [a [1 - e^2]]^2 \int_{v_0}^{v_1} \left[\frac{1}{[1 + e \cos(v)]^2} dv \right]$$

"very difficult" integral
Naval Postgraduate School

SS3011

Area Swept out by an Elliptical Arc (concluded)

$$A_{\text{ellip.}\atop \text{arc}} = \int_{v_0}^{v_1} \left[\frac{1}{2} r (v)^2 d v \right] =$$

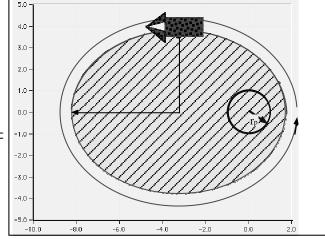
Ouch.
$$\frac{1}{2}[a[1-e^2]]^2$$

$$\frac{1}{2} \left[a \left[1 - e^2 \right] \right]^2 \left[\frac{e \sqrt{e^2 - 1} \, Sin \, (v_1) - 2 \, F_1 - 2 \, e \, Cos \, (v_1) \, F_1}{(e^2 - 1)^{3/2} \left[1 + e Cos \, (v_1) \, \right]} - \frac{1}{2} \left[a \left[1 - e^2 \right] \right]^2 \left[\frac{e \sqrt{e^2 - 1} \, Sin \, (v_0) - 2 \, F_0 - 2 \, e \, Cos \, (v_0) \, F_0}{(e^2 - 1)^{3/2} \left[1 + e Cos \, (v_0) \, \right]} \right]$$

$$F_{1} = \operatorname{Tanh}^{-1} \left[\frac{(e-1)\operatorname{Tan} \left[\frac{v_{1}}{2} \right]}{\sqrt{e^{2}-1}} \right]$$
Naval Postgrad u at e S e hool

Total Area of an Elliptical Orbit

Butwe can solve for the total area of an ellipse in *closed* form



$$e = \sqrt{1 - \left[\frac{b}{a}\right]^2} \Rightarrow \sqrt{1 - e^2} = \frac{b}{a} \Rightarrow$$

$$A_{ellipse} = a^2 \pi \sqrt{1 - e^2} = \pi a^2 \frac{b}{a} = \boxed{\pi a b}$$

Naval Postgraduate School

SS3011

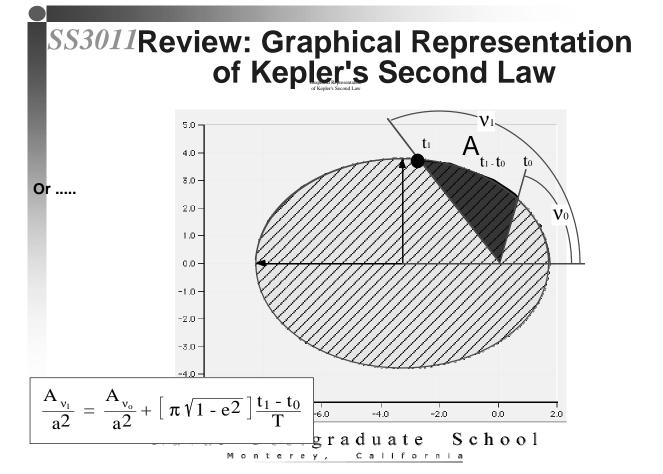
Review: Using Kepler's Second Law to Determine Orbital Position

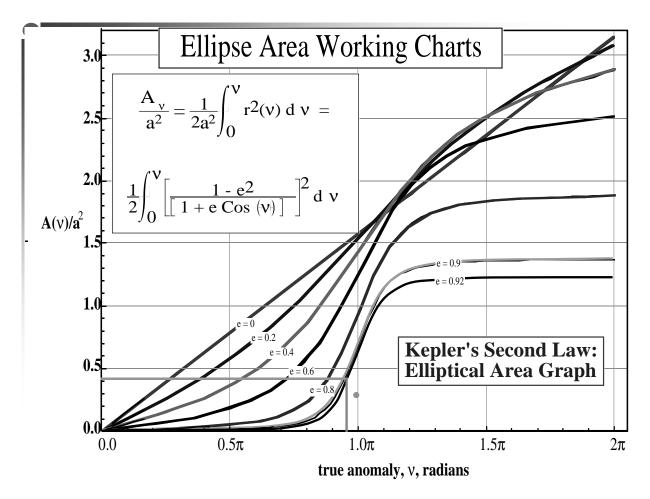
$$\frac{A_{\nu_1^- \nu_0}}{A_{ellipse}} = \frac{t_1 - t_0}{T} \implies A_{\nu_1^- \nu_0} = \left[a^2 \pi \sqrt{1 - e^2} \right] \frac{t_1 - t_0}{T}$$

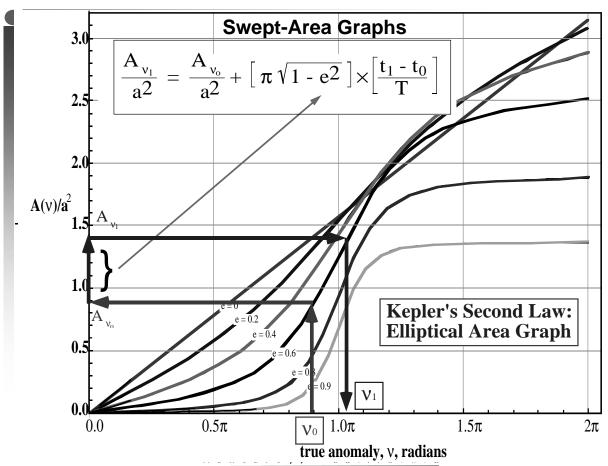
$$A_{v_1 - v_0} = A_{v_1 - 0} - A_{v_0 - 0}$$

$$\frac{A_{\nu_1}}{a^2} \, = \, \frac{A_{\nu_o}}{a^2} + \, \big[\, \pi \, \sqrt{1 - e^2} \, \big] \frac{t_1 - t_0}{T}$$

Mathematical Representation of SS3011 **Kepler's Second Law** 4.0 3.0 2.0 1.0 0.0 "Period" $\frac{A_{t_2-t_1}}{A} = \frac{t_2-t_1}{T} \implies \frac{A_{t_2-t_1}}{\left[a^2 \pi \sqrt{1-e^2}\right]} = \frac{t_2-t_1}{T}$ of the Orbit total 0.0 2.0 $A_{t_2 - t_1} = [a^2 \pi^{\sqrt{1 - e^2}}] \times \frac{t_2 - t_1}{T}$ School



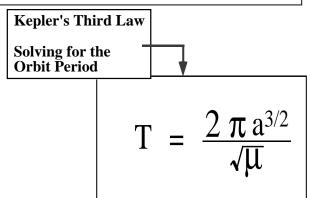




Kepler's Third law

• **Kepler's Third Law:** In a two body universe, square of the period of any object revolving about the sun (Earth) is in the same ratio as the cube of its mean distance

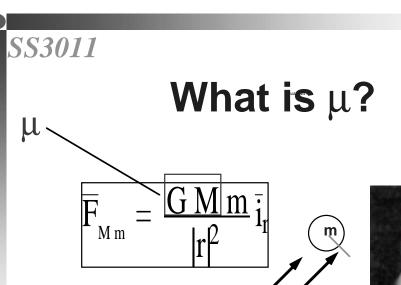
constan
$$\frac{4a^3 \pi^2}{T^2}$$
 $\mu \equiv \text{constan}$



• Third law directly derivable from first and second laws

μ --> Planetary gravitational parameter

Monterey, California



Isaac Newton, (1642-1727) a t e S c h o o l

Naval Postgraduate S

SS3011 **Planetary Gravitational Parameter**

$$\mu_{earth} = G~M \approx 6.672~x~10^{\text{--}11}~\frac{Nt\text{--}m^{\,2}}{kg^{\,2}} \times ~5.974~x~10^{24}kg =$$

$$3.98565 \times 10^{14} \, \frac{\text{Nt-m}^{\,2}}{\text{kg}} = 3.986 \times 10^{14} \, \frac{\text{m}^{\,3}}{\text{sec}^{\,2}} = 1.4076 \times 10^{16} \, \frac{\text{ft}^{\,3}}{\text{sec}^{\,2}}$$

$$\begin{split} \mu_{moon} &= 4.903 \times 10^3 \, \frac{m^3}{sec^2} \\ \mu_{sun} &= 1.327 \times 10^{20} \, \frac{m^3}{sec^2} \\ \mu_{Mars} &= 4.269 \times 10^4 \, \frac{m^3}{sec^2} \\ \text{N a val} &= \frac{\text{Postgraduate}}{\text{N onterey,}} \, \text{chool} \end{split}$$

SS3011 **Elapsed Time Formulae**

(Including Kepler's Third Law)

Elapsed Time Formulae (Including Kepler's Third Law

Kepler Second Law

Kepler Third Law

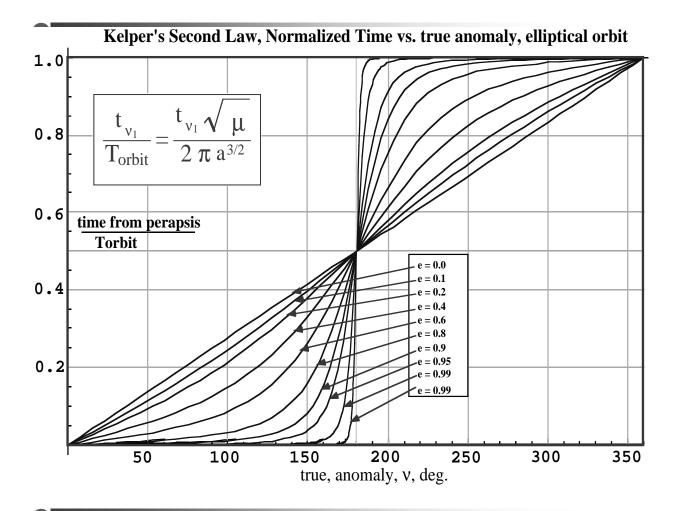
$$T = \frac{2 \pi a^{3/2}}{\sqrt{\mu}}$$

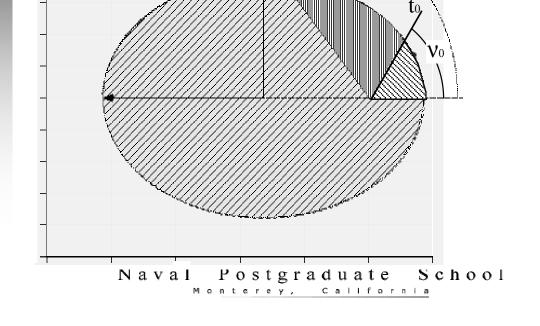
Implicit relationship between t and v

$$\frac{t_{\nu_1} \sqrt{\mu}}{2 \pi a^{3/2}} = \frac{\left[A_{\nu_1} / a^2\right]}{\pi \sqrt{\left[1 - e^2\right]}} =$$

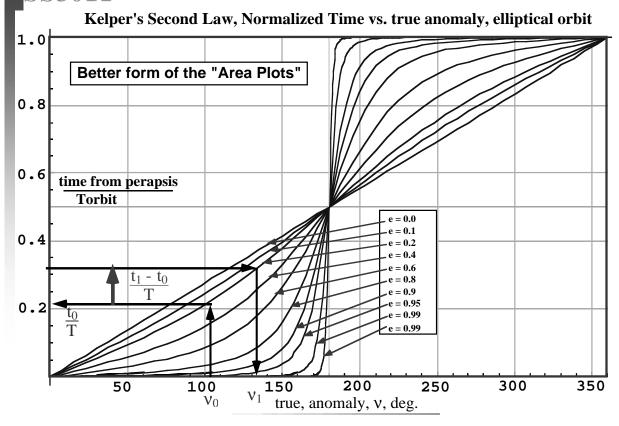
$$\frac{1}{2} \int_0^{\nu_1} \left[\frac{1 - e^2}{1 + e \cos(\nu)} \right]^2 d\nu$$

Naval Postgrad Nave 1school

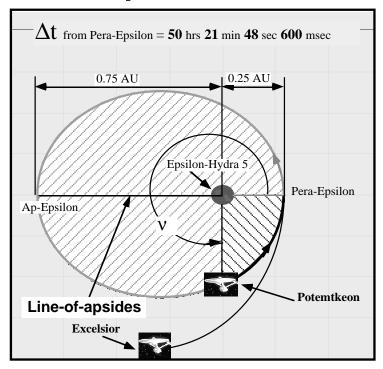




SS3011 Propogation of Orbital Position



Homework: SS3011 Kepler's Second Law



Postscript:Alternate Form of Kepler's Second Law (cont'd)

$$\begin{cases} \text{Let: } [t_2 \Rightarrow t_1] \rightarrow t_2 - t_1 = dt \\ \text{Then: } A_{t_2 - t_1} = d A(t) \end{cases} \Rightarrow d A(t) = [a^2 \pi^{\sqrt{1 - e^2}}] \frac{dt}{T}$$

• But $dA(t) = \frac{1}{2}r^2 dv$

"constant" for a given orbit

and

$$\frac{d A(t)}{d t} = \frac{\left[a^2 \pi \sqrt{r - e^2}\right]}{T} = \frac{\frac{1}{2}r^2 dv}{d t} = \frac{1}{2}r^2 \frac{dv}{d t}$$

"Specific" Angular Momentum

Naval Postgraduate School

SS3011

Kepler's Second Law (Concluded)

Look at the Problem Physics

Gravity Can Exert No Torque on a Satellite

• Therefore, Angular momentum is constant

$$r^{2} \frac{dv}{dt} = \frac{2 \left[a^{2} \pi \sqrt{1 - e^{2}} \right]}{T} \equiv 1$$

Force acts at CG

Homework: Kepler's Second Law (cont'd)

- United Federation of Planets Starship *Potemtkeon* is parked in a highly elliptical orbit around the Federation Outpost planet *Epsilon-Hydra 5.*
- Captain Sulu commanding Potemtkeon has orders to rendezvous with Federation Starship Excelsior commanded by Captain Checkov
- From sensor readings *Captain Sulu* knows that the orbit around *Epsilon-Hydra 5* has a closest approach (pera-Epsilon) of 0.25 astronomical units* (AU). The farthest distance from the planet (ap-Epsilon) is 0.75 AU

 *AU ~ 150,000,000 kilometers
- •The Potemtkeon has passed the orbit ap-Epsilon and is headed back towards the closest approach to the planet
- Navigation data shows that the current position of the *Potemtkeon* relative to the planet is EXACTLY PERPENDICULAR to the *Line of Apsides** of the orbit *(the line connecting the *pera-Epsilon* and the *ap-Epsilon*)

Naval Postgraduate School

SS3011

Homework: Kepler's Second Law (cont'd)

- The onboard atomic clock shows that it has been exactly 50 hours, 21 minutes, 48 seconds, and 600 miliseconds (3021.81minutes) since the Potemtkeon last passed the pera-Epsilon point
- In order to succesfully *rendezvous*, *CaptainCheckov* aboard the *Excelsior* must know the exact orbital eccentricity, e, and the time of arival at the *pera-Epsilon* point from the current position
- What should Captain Sulu tell him?
- If they fail to rendezvous at the next encounter, how long will Checkov have to wait until the next pera-Epsilon encounter

Homework: Kepler's Second Law (concluded)

$$\begin{array}{c} \text{ } \\ \text$$

• Hint 2:

• Hint 3:

$$\frac{A\left(\frac{3\pi}{2}\right)}{A_{total}} = \frac{t\left(\frac{3\pi}{2}\right)}{T}$$

$$\int_{-\frac{\pi}{2}}^{0} \left[\frac{dv}{[1+e \cos(v)]^{2}} \right] =$$

$$\left[\frac{1}{1-e^2}\right] \left[\frac{2 \tan^{-1}\left[\frac{1-e}{\sqrt{1-e^2}}\right]}{\sqrt{1-e^2}} - e\right]$$

SS3011

Homework: Kepler's Second Law (concluded)

Hint 4

..... Or Instead of evaluating the BRUTAL Integral

$$\int_{-\frac{\pi}{2}}^{0} \left[\frac{dv}{[1+e \cos(v)]^{2}} \right] =$$

$$\left[\frac{1}{1-e^2}\right] \left[\frac{2 \tan^{-1}\left[\frac{1-e}{\sqrt{1-e^2}}\right]}{\sqrt{1-e^2}} - e\right]$$

You can use the area Swept Area or time of flight graphs for Kepler's second law